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In this paper, we discuss the large-time behavior of solution of a simple kinetic model
of Boltzmann–Maxwell type, such that the temperature is time decreasing and/or time
increasing. We show that, under the combined effects of the nonlinearity and of the
time-monotonicity of the temperature, the kinetic model has non trivial quasi-stationary
states with power law tails. In order to do this we consider a suitable asymptotic limit
of the model yielding a Fokker-Planck equation for the distribution. The same idea
is applied to investigate the large-time behavior of an elementary kinetic model of
economy involving both exchanges between agents and increasing and/or decreasing
of the mean wealth. In this last case, the large-time behavior of the solution shows a
Pareto power law tail. Numerical results confirm the previous analysis.

KEY WORDS: Granular gases, overpopulated tails, Boltzmann equation, wealth and
income distributions, Pareto distribution.

1. INTRODUCTION

A well-known phenomenon in the large-time behavior of the Boltzmann equa-
tion with dissipative interactions is the formation of overpopulated tails.(3,14,15)

Exact results on the behavior of these tails have been obtained for simplified
models, in particular for a gas of inelastic Maxwell particles. Our goal here is to
show that, at least for some simplified kinetic model, the formation of overpopu-
lated tails is not only a behavior typical of systems where there is dissipation of
the temperature (cooling), but more generally is a consequence of the fact that
the temperature is not conserved. One can indeed conjecture that the formation
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of overpopulated tails in a kinetic model depends on the breaking of energy con-
servation. In kinetic theory of rarefied gases, formation of overpopulated tails has
been first observed for inelastic Maxwell models.(14,15) Inelastic Maxwell models
share with elastic Maxwell molecules the property that the collision rate in the
Boltzmann equation is independent of the relative velocity of the colliding pair.
These models are of interest for granular fluids in spatially homogeneous states
because of the mathematical simplifications resulting from a velocity independent
collision rate. Among others properties, the inelastic Maxwell models exhibit sim-
ilarity solutions, which represent the intermediate asymptotic of a wide class of
initial conditions.(7) Recently, the study of a dissipative kinetic model obtained by
generalizing the classical model known as Kac caricature of a Maxwell gas,(31) led
to new ideas on the mechanism of the formation of tails. Indeed, in(31) connections
between the cooling problem for the dissipative model and the classical central
limit theorem for stable laws of probability theory were found. A second point in
favor of our conjecture on tails formation comes out from some recent applications
to economy of one-dimensional kinetic models of Maxwell type.(13,26,32) The main
physical law here is that a strong economy produces growth of the mean wealth
(which of course is the opposite phenomenon to the dissipation). Nevertheless, the
kinetic model led to an immediate explanation of the formation of Pareto tails.(28)

Having this in mind, in the next Section we study a one-dimensional Boltzmann-
like equation which is able to describe both dissipation and production of energy.
This model has been recently considered in(2) with the aim of recovering exact
self-similar solutions. The analysis of,(2) based on the possibility to use Fourier
transform techniques to investigate properties of the self-similar profiles, shows
that in many cases there is evidence of algebraic decay of the velocity distributions.
On the other hand, except in particular cases, no exact results can be achieved. To
obtain a almost complete description of the large time behavior of the solution, we
resort to a different approach. After a brief description of the model, in Sec. 2 we
introduce a suitable asymptotic analysis, which reduces the Boltzmann equation
to a Fokker-Planck like equation which has an explicitly computable stationary
state with power-like tails. In Sec. 3, we show how similar ideas can be fruitfully
applied to describe the large-time behavior of some elementary kinetic models of
an open economy. Here, the underlying Fokker-Planck equation takes the form of
a similar one introduced recently in.(9,13) The rest of the paper is devoted to the
proof of mathematical details. Numerical experiments on the Boltzmann models
can be found at the end of the paper.

2. KINETIC MODELS AND FOKKER-PLANCK ASYMPTOTICS

In this section we will study the large-time behavior of solutions to one-
dimensional kinetic models of Maxwell-Boltzmann type, where the binary



Self-Similarity and Power-Like Tails in Nonconservative Kinetic Models 749

interaction between particles obey to the law

v∗ = pv + qw, w∗ = qv + pw; p > q > 0. (1)

The positive constants p and q represent the interacting parameters, namely the
portion of the pre-collisional velocities (v,w) which generate the post-collisional
ones (v∗, w∗). As it will be clear after Subsection 2.2, the choice p > q is natural
in mimicking economic interactions, so that we will assume it even in molecular
dynamics. As a matter of fact, the mixing parameters p and q can be exchanged,
which corresponds to the exchange of post-collision velocities, without any change
in the global collision evolution.

2.1. Nonconservative Kinetic Models

Let f (v, t) denote the distribution of particles with velocity v ∈ IR at time
t ≥ 0. The kinetic model can be easily derived by standard methods of kinetic
theory, considering that the change in time of f (v, t) depends on a balance between
the gain and loss of particles with velocity v due to binary collisions. This leads
to the following integro-differential equation of Boltzmann type,(2)

∂ f

∂t
=

∫
IR

(
1

J
f (v∗) f (w∗) − f (v) f (w)

)
dw (2)

where (w∗, w∗) are the pre-collisional velocities that generate the couple (v,w)
after the interaction. In (2) J = p2 − q2 is the Jacobian of the transformation of
(v,w) into (v∗, w∗). Note that, since we fixed p > q, the Jacobian J is positive
and that the unique situation corresponding to J = 1 is obtained taking p = 1 and
q = 0 for which the collision operator vanishes.

The kinetic Eq. (2) is the analogous of the Boltzmann equation for Maxwell
molecules,(4,12) where the collision frequency is assumed to be constant. Also,
it presents several similarities with the one-dimensional Kac model.(21,24) It is
well-known to people working in kinetic theory that this simplification allows for
a better understanding of the qualitative behavior of the solutions.

Without loss of generality, we can fix the initial density to satisfy∫
IR

f0(v) dv = 1 ;
∫

IR
v f0(v) dv = 0

∫
IR

v2 f0(v) dv = 1. (3)

To avoid the presence of the Jacobian, and to study approximation to the collision
operator it is extremely convenient to write Eq. (2) in weak form. It corresponds
to consider, for all smooth functions φ(v), the equation

d

dt

∫
IR

φ(v) f (v, t) dv =
∫

IR2
f (v) f (w)(φ(v∗) − φ(v)) dv dw. (4)
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One can alternatively use the symmetric form

d

dt

∫
IR

f (v)φ(v) dv = 1

2

∫
IR2

f (v) f (w)

(φ(v∗) + φ(w∗) − φ(v) − φ(w) dv dw. (5)

A remarkable fact is that Eqs. (4) and (5) can be studied for all values of the mixing
parameters p and q, including the case p = q, which could not be considered in
Eq. (3).

Choosing φ(v) = v, (respectively φ(v) = v2) shows that

m(t) =
∫

IR
v f (v, t) dv = m(0) exp {(p + q − 1)t} . (6)

Hence, since the initial density f0 satisfies (3), m(0) = 0 and m(t) = 0 for all
t > 0. Consequently,

E(t) =
∫

IR
v2 f (v, t) dv = exp{(p2 + q2 − 1)t}. (7)

Higher order moments can be evaluated recursively, remarking that the integrals∫
vn f (v, t) obey a closed hierarchy of Eq. (3).

Note that the second moment of the solution is not conserved, unless the
collision parameters satisfy

p2 + q2 = 1.

If this is not the case, the energy can grow to infinity or decrease to zero, depending
on the sign of p2 + q2 − 1. In both cases, however, stationary solutions of finite
energy do not exist, and the large-time behavior of the system can at best be
described by self-similar solutions. The standard way to look for self-similarity is
to scale the solution according to the role

g(v, t) =
√

E(t) f
(
v
√

E(t), t
)
. (8)

This scaling implies that
∫

v2g(v, t) = 1 for all t ≥ 0. Elementary computations
show that g = g(v, t) satisfies the equation

∂g

∂t
− 1

2
(p2 + q2 − 1)

∂

∂v
(vg) =

∫
IR

(
1

J
g(v∗)g(w∗) − g(v)g(w)

)
dw. (9)

In weak form, Eq. (9) reads

d

dt

∫
IR

φ(v)g(v, t) dv −1

2
(p2 + q2 − 1)

∫
IR

φ(v)
∂

∂v
(vg) dv

=
∫

IR2
g(v)g(w)(φ(v∗) − φ(v)) dv dw. (10)
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Assuming that φ vanishes at infinity, we can integrate by parts the second integral
on the right-hand side of (10) to obtain

d

dt

∫
IR

φ(v)g(v, t) dv + 1

2
(p2 + q2 − 1)

∫
IR

φ′(v)vg(v) dv (11)

=
∫

IR2
g(v)g(w)(φ(v∗) − φ(v)) dv dw.

By the collision rule (1),

v∗ − v = (p − 1)v + qw.

Let us use a second order Taylor expansion of φ(v∗) around v

φ(v∗) − φ(v) = ((p − 1)v + qw) φ′(v) + 1

2
((p − 1)v + qw)2 φ′′(ṽ),

where, for some 0 ≤ θ ≤ 1

ṽ = θv∗ + (1 − θ )v.

Inserting this expansion in the collision operator, we obtain the equality∫
IR2

g(v)g(w)(φ(v∗) −φ(v)) dvdw =
∫

IR2
g(v)g(w)((p − 1)v

+ qw) φ′(v) dvdw + 1

2

∫
IR2

g(v)g(w)((p − 1)v

+ qw)2φ′′(v) dvdw + R(p, q), (12)

where

R(p, q) = 1

2

∫
IR2

((p − 1)v + qw)2 (φ′′(ṽ) − φ′′(v))g(v)g(w) dv dw. (13)

Recalling that g(v, t) satisfies (3), we can simplify into (12) to obtain∫
IR2

g(v)g(w)(φ(v∗) − φ(v)) dv dw = (p − 1)
∫

IR
vg(v)φ′(v) dv

1

2

∫
IR

g(v)((p − 1)2v2 + q2)φ′′(v) dv + R(p, q). (14)

Substituting (14) into (11), and grouping similar terms, we conclude that g(v, t)
satisfies

d

dt

∫
IR

φ(v)g(v, t) dv + 1

2

(
(p − 1)2 + q2

) ∫
IR

φ′(v)vg(v) dv

= 1

2

∫
IR

g(v)
(
(p − 1)2v2 + q2

)
φ′′(v)dv + R(p, q). (15)
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Hence, if we set

τ = q2t, h(v, τ ) = g(v, t), (16)

which implies g0(v) = h0(v), h(v, τ ) satisfies

d

dτ

∫
IR

φ(v)h(v, τ ) dv + 1

2

((
p − 1

q

)2

+ 1

) ∫
IR

φ′(v)vh(v) dv

= 1

2

∫
IR

h(v)

((
p − 1

q

)2

v2 + 1

)
φ′′(v) dv + 1

q2
R(p, q). (17)

Suppose now that the remainder in (17) is small for small values of the parameter
q. Then Eq. (17) gives the behavior of g(v, t) for large values of time. Moreover,
taking p = p(q) such that, for a given constant λ

lim
q→0

p(q) − 1

q
= λ, (18)

Equation (17) is well-approximated by the equation (in weak form)

d

dτ

∫
IR

φ(v)h(v, τ ) dv + 1

2
(λ2 + 1)

∫
IR

φ′(v)vh(v) dv

= 1

2

∫
IR

h(v)
(
λ2v2 + 1

)
φ′′(v) dv. (19)

Equation (19) is nothing but the weak form of the Fokker-Planck Equation.

∂h

∂τ
= 1

2

(
∂2

∂v2
((1 + λ2v2)h) + (1 + λ2)

∂

∂v
(vh)

)
, (20)

which has a unique stationary state of unit mass, given by

Mλ(v) = cλ

(
1

1 + λ2v2

) 3
2 + 1

2λ2

, (21)

where

cλ = |λ|√
π

�

(
3λ2 + 1

2λ2

)

�

(
1 + 2λ2

2λ2

) . (22)

Remark 2.1. The derivation of the Fokker-Planck equation (20) presented in
this section is largely formal. The main objective here was to show that there are
regimes of the mixing parameters for which we can expect formation of self-similar
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solutions to the kinetic model with overpopulated tails. We postpone the detailed
proof and the mathematical technicalities to the second part of the paper.

Remark 2.2. The conservative case p2 + q2 = 1 can be treated likewise. In this
case one is forced to choose p =

√
1 − q2, which gives λ = 0 as unique possible

value. In the limit one then obtains the linear Fokker-Planck equation

∂h

∂τ
= 1

2

(
∂2h

∂v2
+ ∂

∂v
(vh)

)
. (23)

Note that in this case the stationary solution M(v) is the Maxwell density

M(v) = 1√
2π

e−v2/2, (24)

for all q < 1/
√

2. On the contrary, the non conservative cases are characterized
by a λ different from zero, which produces a stationary state with overpopulated
tails. Note that from (22) we have cλ → 1/

√
2π as λ → 0 and thus M(v) =

limλ→0 Mλ(v).

Remark 2.3. The possibility to pass to the limit in (18), with λ > 0, is restricted
to the cases p2 + q2 < 1 and p2 + q2 > 1, but p > 1. In the case p2 + q2 > 1,
p < 1, it holds

0 <
(1 − p)2

q2
<

1 − p

1 + p
,

which forces λ towards zero as p → 1. This case, as the conservative one, gives in
the limit the linear Fokker-Planck equation. Hence, formation of tails is expected
in case of dissipation of energy, as well in case of production of energy, but only
when the mixing parameter p > 1.

Remark 2.4. In addition to the conservative case, a second one deserves to be
mentioned. If p = 1 − q, the kinetic models is nothing but the model for granular
dissipative collisions introduced and studied in(1,3,25) as a one-dimensional car-
icature of the Maxwell-Boltzmann equation (5, 6). In this case λ = −1, and the
stationary state is

M1(v) = 2

π

(
1

1 + v2

)2

. (25)

This solution solves the kinetic Eq. (10), for any value of the parameter q < 1/2.

Remark 2.5. The asymptotic procedure considered in this section is the analogue
of the so-called grazing collision limit of the Boltzmann equation,(36,37) which relies
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in concentrating the rate functions on collisions which are grazing, so leaving the
collisional velocities unchanged. It is well-known that in this (conservative) case,
while the Boltzmann equation changes into the Landau-Fokker-Planck equation,
the stationary distribution remains of Maxwellian type.

2.2. Pareto Tails in Kinetic Models of Economy

In this section we show how to extend the asymptotic analysis of the previous
section to the case in which the kinetic model describes the time evolution of
a density f (v, t), which now denotes the distribution of wealth v ∈ IR+ among
economic agents at time t ≥ 0. The collision (1) represents now a trade between
individuals. For a deep insight into the matter, we address the interested reader
to,(16,17,20,29,30) and to the references therein. With the convention f (v, t) = 0 if
v < 0, the kinetic model reads.(13,26)

∂ f (v)

∂t
=

∫
IR+

(
1

J
f (v∗) f (w∗) − f (v) f (w)

)
dw (26)

where (v∗, w∗) ∈ IR+ are the post-trade wealths generated by the couple (v,w)
after the interaction, along the rule (1). As before, the jacobian J = p2 − q2.
Since the v-variable takes values in IR+, the collision rules (1) lead to a remarkable
difference with respect to the case treated in the previous section. The pair (v∗, w∗)
of pre-collision variables that generate the pair (v,w) is given by

v∗ = pv − qw

J
, w∗ = pw − qv

J
.

While in the former case this pair is always admissible (v∗, w∗ ∈ IR), in the
latter we have to discard all pairs of pre-collision variables for which v∗ < 0 or
w∗ < 0. This shows that, for any given v ∈ IR+, the product f (v∗) f (w∗) in (26)
is different from zero only on the set B = {(q/p)v < w < (p/q)v}. This implies
in other words that, if we fix the wealth v ∈ IR+ as outcome of a single trade, the
other outcome w can only lie on the subset B.

A great simplification is obtained writing Eq. (26) in weak form, where the
presence of pre-collision wealths is avoided,

d

dt

∫
IR+

φ(v) f (v, t) dv =
∫

IR2
+

f (v, t) f (w, t)(φ(v∗) − φ(v)) dv dw. (27)

Remark 2.6. The role of the energy is now played by the mean m(t) =∫
v f (v, t) dv. Note however that one can think to Eq. (26) as the analogous

of the isotropic form of a hard-sphere Boltzmann equation for a density function
f (v′, t), v′ ∈ IR written with respect to energy variable v = (v′)2/2. In this sense
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it is again the non conservation of the energy that will originate the power law
tails.

To look for self-similarity we scale our solution according to

g(v, t) = m(t) f (m(t)v, t) , (28)

which implies that
∫

vg(v, t) = 1 for all t > 0. Moreover g = g(v, t) satisfies the
equation

d

dt

∫
IR+

φ(v)g(v, t) dv − (p + q − 1)
∫

IR+
φ(v)

∂

∂v
(vg) dv

=
∫

IR2
+

g(v)g(w)(φ(v∗) − φ(v)) dv dw. (29)

Performing the same computations of the previous section, and mutatis mutandis
we conclude that g(v, t) satisfies

d

dt

∫
IR+

φ(v)g(v, t) dv + q

∫
IR

φ′(v)(v − 1)g(v) dv = 1

2

∫
IR

g(v)

× ((p − 1)2v2 + q2w2 + 2(p − 1)qvw)φ′′(v) dv + R(p, q). (30)

The form of the remainder R(p, q) is analogous to that of (13). It is clear that the
correct scaling for small values of the parameter q is now

τ = qt, h(v, τ ) = g(v, t), (31)

which implies that h(v, τ ) satisfies the equation

d

dτ

∫
IR+

φ(v)h(v, τ ) dv +
∫

IR
φ′(v)(v − 1)h(v) dv

= 1

2

∫
IR

h(v)
(p − 1)2

q
v2φ′′(v)dv + R1(p, q), (32)

where the remainder R1 is given by

R1(p, q) = 1

2

∫
IR+

(qw2 + 2(p − 1)vw)φ′′(v) dv + 1

q
R(p, q).

Let us consider a parameter p = p(q) such that, for a given constant λ > 0

lim
q→0

(p(q) − 1)2

q
= λ. (33)

Then, Eq. (32) is well-approximated by the equation (in weak form)

d

dτ

∫
IR

φ(v)h(v, τ ) dv +
∫

IR
φ′(v)(v − 1)h(v) dv = λ

2

∫
IR

h(v)v2φ′′(v) dv. (34)
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Equation (34) is nothing but the weak form of the Fokker-Planck equation

∂h

∂τ
= λ

2

∂2

∂v2
(v2h) + ∂

∂v
[(v − 1)h], (35)

which admits a unique stationary state of unit mass, given by the �-distribution(9,13)

Mλ(v) = (µ − 1)µ

�(µ)

exp
(
−µ−1

v

)
v1+µ

(36)

where

µ = 1 + 2

λ
> 1.

This stationary distribution exhibits a Pareto power law tail for large v’s.
Note that this equation is essentially the same Fokker-Planck equation derived

from a Lotka-Volterra interaction in(9,23,33)

Remark 2.7. The formal analysis shows that the Fokker-Planck Equation (34)
follows from the kinetic model independently of the sign of the quantity p + q − 1,
which can produce exponential growth of wealth (when positive), or exponential
dissipation of wealth (when negative). Hence, Pareto tails are produced in both
situations, as soon as the compatibility condition (33) holds. As discussed in
Remark 2.3., condition (33) is always admissible if p + q − 1 < 0, while one has
to require p > 1 if p + q − 1 > 0. This is quite remarkable since it shows that this
uneven distribution of money which characterizes most western economies may
not only be produced as the effect of a growing economy but also under critical
economical circumstances.

Remark 2.8. The model studied in(32) corresponds to the choice p = 1 − q + ε,
with ε > 0. This interaction implies exponential growth of wealth, and convergence
of the solution to the Fokker-Planck equation if ε = ε(q) satisfies

lim
q→0

ε2(q)

q
= λ.

Since the same limit equation is derived within the choice p = 1 − q − ε, we are
free to choose ε negative. The particular choice

ε = −2
√

q + 2q,

which implies µ = 3/2 and thus λ = 4, leads to the stationary state [32]

M4(v) = 1√
2π

exp
(− 1

2v

)
v5/2

, (37)

which solves the kinetic Eq. (29) for all values of the scaling parameter q < 1/4.
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3. THE FOURIER TRANSFORM OF THE KINETIC EQUATIONS

The formal results of Sec. 2.1 and 2.2 suggest that, at least in the limit
p → 1 and q → 0, the large-time behavior of the solution to the kinetic model
(9) is characterized by the presence of overpopulated tails. In what follows, we
will justify rigorously this behavior, at least for a certain domain of the mixing
parameters p and q. We start our analysis with a detailed study of the Boltzmann
model (2).

The initial value problem for this model can be easily studied using its weak
form (4). Let M0 the space of all probability measures in IR+ and by

Mα =
{
µ ∈ M0 :

∫
IR

|v|αµ(dv) < +∞, α > 0
}
, (38)

the space of all Borel probability measures of finite momentum of order α,
equipped with the topology of the weak convergence of the measures.

By a weak solution of the initial value problem for Eq. (2), corresponding to
the initial probability density f0(w) ∈ Mα, α > 2 we shall mean any probability
density f ∈ C1(IR,Mα) satisfying the weak form of the equation

d

dt

∫
IR

φ(v) f (v, t) dv =
∫

IR2
f (v) f (w)(φ(v∗) − φ(v)) dv dw, (39)

for t > 0 and all smooth functions φ, and such that for all φ

lim
t→0

∫
IR

φ(v) f (v, t) dv =
∫

IR
φ(v) f0(v) dv. (40)

In the rest of this section, we shall study the weak form of Eq. (2), with the
normalization conditions (3). It is equivalent to use the Fourier transform of the
equation (4):

∂ f̂ (ξ, t)

∂t
= Q̂( f̂ , f̂ )(ξ, t), (41)

where f̂ (ξ, t) is the Fourier transform of f (x, t),

f̂ (ξ, t) =
∫

IR
e−iξv f (v, t) dv,

and

Q̂( f̂ , f̂ )(ξ ) = f̂ (pξ ) f̂ (qξ ) − f̂ (ξ ) f̂ (0). (42)

The initial conditions (3) turn into

f̂ (0) = 1, f̂ ′(0) = 0, f̂ ′′(0) = −1,
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f̂ ∈ C2(IR). Hence Eq. (41) can be rewritten as

∂ f̂ (ξ, t)

∂t
+ f̂ (ξ, t) = f̂ (pξ ) f̂ (qξ ). (43)

Equation (43) is a special case of equation (4.8) considered by Bobylev and
Cercignani in [6]. Consequently, most of their conclusions applies to the present
situation as well. The main difference here is that the mixing parameters p and q
are allowed to assume values bigger than 1.

We introduce a metric on Mp by

ds( f, g) = sup
ξ∈IR

| f̂ (ξ ) − ĝ(ξ )|
|ξ |s (44)

Let us write s = m + α, where m is an integer and 0 ≤ α < 1. In order that
ds(F, G) be finite, it suffices that F and G have the same moments up to order m.

The norm (44) has been introduced in [18] to investigate the trend to equilib-
rium of the solutions to the Boltzmann equation for Maxwell molecules. There, the
case s = 2 + α, α > 0, was considered. Further applications of ds can be found
in.(10,11,19,35)

3.1. Uniqueness and Asymptotic Behavior

We will now study in details the asymptotic behavior of the scaled function
g(v, t). As briefly discussed before, a related analysis has been performed in
the framework of the study of self-similar profiles for the Boltzmann equation
for Maxwell molecules in.(6,7) Likewise, the role of the Fourier distance in the
asymptotic study of nonconservative kinetic equations has been evidenced in.(31)

Consequently, part of the results presented here fall into the results of,(6,31) and
could be skipped. Nevertheless, for the sake of completeness, we will discuss the
point in an exhaustive way.

The existence of a solution to Eq. (2) can be seen easily using the same
methods available for the elastic Kac model. In particular, a solution can be
expressed as a Wild sum.(4,10) In order to prove uniqueness, we use the method
first introduced in.(18) Let f1 and f2 be two solutions of the Boltzmann equation
(2), corresponding to initial values f1,0 and f2,0 satisfying conditions (3), and f̂1,
f̂2 their Fourier transforms. Given any positive constant s, with 2 ≤ s ≤ 3, let us
suppose in addition that ds( f1,0, f2,0) is bounded. Then, it holds

∂

∂t

( f̂1 − f̂2)

|ξ |s + f̂1(ξ ) − f̂2(ξ )

|ξ |s = f̂1(pξ ) f̂1(qξ ) − f̂2(pξ ) f̂2(qξ )

|ξ |s . (45)
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Now, since | f̂1(ξ )| ≤ 1 (| f̂2(ξ )| ≤ 1), we obtain∣∣∣∣∣ f̂1(pξ ) f̂1(qξ ) − f̂2(pξ ) f̂2(qξ )

|ξ |s
∣∣∣∣∣ ≤ | f̂1(pξ )|

∣∣∣∣∣ f̂1(qξ ) − f̂2(qξ )

|qξ |s
∣∣∣∣∣ qs (46)

+ | f̂2(qξ )|
∣∣∣∣∣ f̂1(pξ ) − f̂2(pξ )

|pξ |s
∣∣∣∣∣ ps ≤ sup

∣∣∣∣∣ f̂1 − f̂2

|ξ |s
∣∣∣∣∣ (ps + qs).

We set

h(t, ξ ) = f̂1(ξ ) − f̂2(ξ )

|ξ |s .

The preceding computation shows that∣∣∣∣∂h

∂t
+ h

∣∣∣∣ ≤ (ps + qs)‖h‖∞. (47)

Gronwall’s lemma proves at once that

‖h(t)‖∞ ≤ exp{(ps + qs − 1)t}‖h0‖∞.

We have

Theorem 3.1. Let f1(t) and f2(t) be two solutions of the Boltzmann equation (2),
corresponding to initial values f1,0 and f2,0 satisfying conditions (3). Then, if for
some 2 ≤ s ≤ 3, ds( f1,0, f2,0) is bounded, for all times t ≥ 0,

ds( f1(t), f2(t)) ≤ exp{(ps + qs − 1)t}ds( f1,0, f2,0). (48)

In particular, let f0 be a nonnegative density satisfying conditions (3). Then, there
exists a unique weak solution f (t) of the Boltzmann equation, such that f (0) = f0.
In case ps + qs − 1 < 0 the distance ds is contracting exponentially in time.

Let us remark that, given a constant a > 0,

sup
ξ∈IR

| f̂1(aξ ) − f̂2(aξ )|
|ξ |s = as sup

ξ∈IR

| f̂1(aξ ) − f̂2(aξ )|
|aξ |s = asds( f1, f2). (49)

Hence, if g(t) represents the solution f (t) scaled by its energy like in (8),

ĝ(ξ ) = f̂

(
ξ√
E(t)

)
,

and from (49) we obtain the bound

ds(g1(t), g2(t)) = sup
ξ∈IR

|ĝ1(ξ, t) − ĝ2(ξ, t)|
|ξ |s =

(
1√
E(t)

)s

ds( f1(t), f2(t)). (50)
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Using (48), we finally conclude that, if g1(t) and g2(t) are two solutions of the scaled
Boltzmann equation (9), corresponding to initial values f1,0 and f2,0 satisfying
conditions (3), then, if 2 ≤ s ≤ 3, for all times t ≥ 0,

ds(g1(t), g2(t)) ≤ exp
{[

(ps + qs − 1) − s

2
(p2 + q2 − 1)

]
t
}

ds( f1,0, f2,0).

(51)
Let us define, for δ ≥ 0,

Sp,q (δ) = p2+δ + q2+δ − 1 − 2 + δ

2
(p2 + q2 − 1). (52)

Then, the sign of Sp,q determines the asymptotic behavior of the distance
ds(g1(t), g2(t)). In particular, if there exists an interval 0 < δ < δ̄ in which
Sp,q (δ) < 0, we can conclude that d2+δ(g1(t), g2(t)) converges exponentially to
zero. Note that, by construction, Sp,q (0) = 0, and thus minδ{Sp,q} ≤ 0. The
function (52) was first considered by Bobylev and Cercignani in [6]. The sign
of Sp,q , however was studied mainly for p = 1 − q, namely the case of the
dissipative Boltzmann equation. In Figure 1 a numerical evaluation of the re-
gion where the minimum of the function Sp,q is negative for p, q ∈ [0, 2] is
reported.
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Fig. 1. The white domain represents the region where the minimum of the function Sp,q is negative
for p, q ∈ [0, 2].
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Remark 3.2. The behavior of Sp,q (δ) when p2 + q2 = 1 is clear. In this case in
fact, both p and q are less than 1, which implies

Sp,q (δ) = p2+δ + q2+δ − 1 < 0,

for all δ > 0. We can draw the same conclusion when p2 + q2 > 1, while both
p < 1 and q < 1.

Consider now the case p2 + q2 > 1, with p > 1. In this case, while
− 2+δ

2 (p2 + q2 − 1) decreases linearly, p2+δ increases exponentially, and the sign
of Sp,q (δ) becomes positive for large values of δ.

If finally p2 + q2 < 1, the sign of Sp,q (δ) for large values of δ is positive,
since, while p2+δ + q2+δ − 1 < 0,

−2 + δ

2

(
p2 + q2 − 1

) ≥ 1

for

δ ≥ 2(p2 + q2)

1 − (p2 + q2)
.

The previous remark indicates that in the general case one can at best hope
that Sp,q (δ) is negative in an interval (0, δ̄). To show that this is really the case,
one has to investigate carefully the behavior of Sp,q (δ) in a neighborhood of zero.
Since the function Sp,q (δ) is convex for δ ≥ 0,

d2Sp,q (δ)

dδ2
= p2+δ(log p)2 + q2+δ(log q)2 > 0,

and Sp,q (0) = 0, in all cases where Sp,q (δ) is positive for large values of δ, a
sufficient condition for Sp,q (δ) be negative in some interval 0 < δ < δ̄ is that

dSp,q (δ)

dδ

∣∣∣∣
δ=0

= p2 log p + q2 log q − 1

2
(p2 + q2 − 1) < 0.

Let us discuss before the case p2 + q2 < 1. Given λ > 0, we introduce a
dependence between p and q by setting p = 1 − λq. Since p > q, this re-
lationship is possible only if q < 1/(1 + λ). Moreover p2 + q2 < 1 requires
q < (2λ)/(1 + λ2). Using this, it is immediate to show that there is an interval
0 ≤ q ≤ q̄ in which S ′

p,q (0) < 0. We have

dSp,q (δ)

dδ

∣∣∣∣
δ=0

= G(q) = (1 − λq)2 log(1 − λq) + q2 log q

−1

2

(
(1 − λq)2 + q2 − 1

)
.
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Clearly, G(0) = 0. Moreover

G ′(q) = 2q log q − 2λ(1 − λq) log(1 − λq),

and

G ′′(q) = 2(1 + log q) + 2λ2 (1 + log(1 − λq)) .

Now G ′′(q) < 0 in some interval (0, q1), which implies that G ′(q) is decreasing
in the same interval. But, since G ′(0) = 0, G ′(q) < 0 in the interval (0, q̄), where
q̄ solves

2q̄ log q̄ − 2λ(1 − λq̄) log(1 − λq̄) = 0

Consequently, G(q) < 0 at least in the same interval.
Let us now treat the case p2 + q2 > 1, with p > 1. Let us set p = 1 + λq.

We have

dSp,q (δ)

dδ

∣∣∣∣
δ=0

= G(q) = (1 + λq)2 log(1 + λq) + q2 log q

−1

2

(
(1 + λq)2 + q2 − 1

)
.

In this case

G ′(q) = 2q log q + 2λ(1 + λq) log(1 + λq),

and

G ′′(q) = 2(1 + log q) + 2λ2 (1 + log(1 + λq)) .

As before, G ′′(q) < 0 in some interval (0, q2), which implies that G ′(q) is decreas-
ing in the same interval. But, since G ′(0) = 0, G ′(q) < 0 in the interval (0, q̄),
where q̄ now solves

2q̄ log q̄ + 2λ(1 + λq̄) log(1 + λq̄) = 0

Consequently, G(q) < 0 at least in the same interval.
We proved

Lemma 3.3. Let Sp,q (δ), δ > 0 be the function defined by (52). Given a
constant λ > 0, if p2 + q2 < 1, let us define p = 1 − λq . Then, provided
q < min{1/(1 + λ), (2λ)/(1 + λ2)} there exists an interval I− = (0, δ̄−(q)) such
that Sp,q (δ) < 0 for δ ∈ I−. If p2 + q2 > 1, and p = 1 + λq there exists an in-
terval I+ = (0, δ̄+(q)) such that Sp,q (δ) < 0 for δ ∈ I+. In the remaining cases,
namely when p2 + q2 = 1 or p2 + q2 > 1 but p < 1, Sp,q (δ) < 0 for all δ > 0.
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Lemma 3.3 has important consequences both in the behavior of the solution
to the Boltzmann equation (9), and in the limit procedure introduced in Sections
2.1 and 2.2. The main consequence of the lemma is contained into the following.

Theorem 3.4. Let g1(t) and g2(t) be two solutions of the Boltzmann equation (9),
corresponding to initial values f1,0 and f2,0 satisfying conditions (3). Then, there
exists a constant δ̄ > 0 such that, if 2 < s < 2 + δ̄, for all times t ≥ 0,

ds(g1(t), g2(t)) ≤ exp {−Cst} ds( f1,0, f2,0). (53)

The constant Cs = −Sp,q (s − 2) is strictly positive, and the distance ds is con-
tracting exponentially in time.

3.2. Convergence to Self-Similarity

By means of the estimates of Sec. 3.1, we will now discuss the evolution of
moments for the solution to equation (9). By construction, the second moment of
g(v, t) is constant in time, and equal to 1 thanks to the normalization conditions (3).
We can use the computations leading to the Fokker-Planck equation (23), choosing
φ(v) = |v|2+δ , where for the moment the positive constant δ ≤ 1. Suppose that
the initial density g0(v) = f0(v) is such that∫

IR
|v|2+δg0(v) dv = mδ < ∞. (54)

Then, since the contribution due to the term ∂
∂v

(vg(v)) can be evaluated integrating
by parts, ∫

IR
|v|2+δ ∂

∂v
(vg(v)) dv = −(2 + δ)

∫
IR

|v|2+δg(v, t) dv,

we obtain

d

dt

∫
IR

|v|2+δg(v, t) dv + (2 + δ)
p2 + q2 − 1

2

∫
IR

|v|2+δg(v, t) dv (55)

=
∫

IR2
dv dw(|pv + qw|2+δ − |v|2+δ)g(v)g(w) .

Let us recover a suitable upper bound for the last integral in (55). Given any two
constants a, b, and 0 < δ ≤ 1 the following inequality holds

(|a| + |b|)δ ≤ |a|δ + |b|δ. (56)

Hence, choosing a = p|v| and b = q|w|,
|pv + qw|2+δ ≤ (pv + qw)2(pδ|v|δ + qδ|w|δ).
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Substituting into the right-hand side of (55), recalling that the mean value of g is
equal to zero, and the second moment of g equal to one, gives∫

IR2
|pv + qw|2+δg(v)g(w) dv dw ≤

∫
IR2

(pv + qw)2

× (pδ|v|d + qδ|w|d )g(v)g(w) dv dw = (p2+δ + q2+δ)

×
∫

IR
|v|2+δg(v) dv + (p2qδ + q2 pδ)

∫
IR

|v|δ dv.

Grouping all these inequalities, and recalling the expression of Sp,q (δ) given by
(52) we obtain the differential inequality

d

dt

∫
IR

|v|2+δg(v, t) dv ≤ Sp,q (δ)
∫

IR
|v|2+δg(v, t) dv + Bp,δ, (57)

where, by Hölder inequality

Bp,δ ≤ p2qδ + q2 pδ. (58)

By Lemma 3.3, for any δ < δ̄, Sp,q (δ) < 0. In this case, inequality (57) gives an
upper bound for the moment, that reads∫

IR
|v|2+δg(v, t) dv ≤ mδ + Bp,δ

|Sp,q (δ)| < ∞. (59)

In the case δ̄ > 3 we can easily iterate our procedure to obtain that any moment
of order 2 + δ, with δ < δ̄ which is bounded initially, remains bounded at any
subsequent time. The only difference now is that the explicit expression of the
bound is more and more involved.

If δ < δ̄, we can immediately draw conclusions on the large-time convergence
of class of probability densities {g(v, t)}t>0, By virtue of Prokhorov theorem
(cfr.(22)) the existence of a uniform bound on moments implies that this class is
tight, so that any sequence {g(v, tn)}n>0 contains an infinite subsequence which
converges weakly to some probability measure g∞. Thanks to our bound on
moments, provided δ < δ̄, g∞ possesses moments of order 2 + δ, for 0 < δ < δ̄.

It is now immediate to show that this limit is unique. To this aim, let us
consider two initial densities f0,1(v) and f0,2(v) such that, for some 0 < δ < δ̄,∫

R
|v|2+δ f0,1(v) dv < +∞,

∫
R

|v|2+δ f0,2(v) dv < +∞.

Then, by Theorem 3.4, the distance ds( f1(t), f2(t)) between the solutions con-
verges exponentially to zero with respect to time, as soon as 2 < s < 2 + δ̄. Let
now f0(v) possess finite moments of order 2 + δ, with 0 < δ < δ̄. Thanks to our
previous computations on moments, for any fixed time T > 0, the corresponding
solution f (v, T ) has finite moments of order 2 + δ. Choosing f0,1(v) = f0(v), and
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f0,2(v) = f (v, T ) shows that ds( f (t), f (t + T )) converges exponentially to zero
in time. It turns out that the ds-distance between subsequences converges to zero
as soon as Sp,q (s − 2) < 0.

We can now show that the limit function g∞(v) is a stationary solution to (9).
We know that if condition (54) holds, both the solution g(v, t) to equation (9) and
g∞(v) have moments of order 2 + δ, with 0 < δ < δ̄ uniformly bounded. Hence,
for any t ≥ 0, proceeding as in the proof of Theorem 3.1, we obtain

ds (Q(g(t), g(t)), Q(g∞, g∞)) ≤ (ps + qs + 1) ds (g(t), g∞) . (60)

This implies the weak* convergence of Q(g(t), g(t)) towards Q(g∞, g∞). In par-
ticular, due to the equivalence among different metrics which metricize the weak*
convergence of measures,(18,35) if C1

0 (R) denotes the set of compactly supported
continuously differentiable functions, endowed with it natural norm ‖ · ‖1, for all
φ ∈ C1

0 (R),∫
IR

φ(v)Q(g(t), g(t))(v) dv →
∫

IR
φ(v)Q(g∞, g∞)(v) dv. (61)

On the other hand, for all φ ∈ C1
0 (R), integration by parts gives∫

IR
φ(v)

∂

∂v
(vg(v, t)) dv = −

∫
IR

vφ ′(v)g(v, t) dv. (62)

Since |vφ ′(v)| ≤ |v|‖φ ′‖1, and the second moment of g(v, t) is equal to unity, the
convergence of ds (g(t), g∞) to zero implies∫

IR
vφ ′(v)g(v, t) dv →

∫
IR

vφ ′(v)g∞(v) dv. (63)

Finally, for all φ ∈ C1
0 (R) it holds∫

IR
φ(v)

{
∂

∂v
(vg∞(v)) − Q(g∞, g∞)(v)

}
dv = 0. (64)

This shows that g∞ is the unique stationary solution to (9). We have

Theorem 3.5. Let δ > 0 be such that Sp,q (δ) < 0, and let g∞(v) be the unique
stationary solution to equation (9). Let g(v, t) be the weak solution of the
Boltzmann equation (9), corresponding to the initial density f0 satisfying∫

|v|2+δ f0(v) dv < ∞.

Then, g(v, t) satisfies ∫
|v|2+δ g(v, t) dv ≤ cδ < ∞.
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If 0 < δ ≤ 1 the constant cδ is given by (59). Moreover, g(v, t) converges expo-
nentially fast in Fourier metric towards g∞(v), and the following bound holds

d2+δ(g(t), g∞) ≤ d2+δ( f0, g∞) exp{−|Sp,q (δ)|t} (65)

where Sp,q (δ) is given by (52).

Depending of the values of the mixing parameters p and q, the stationary
solution g∞ can have overpopulated tails. We can easily check the presence of
overpopulated tails by looking at the singular part of the Fourier transform (14).
Since the Fourier transform of g∞ satisfies the equation

− p2 + q2 − 1

2
ξ
∂ ĝ

∂ξ
+ ĝ(ξ ) = ĝ(pξ )ĝ(qξ ), (66)

we set

ĝ(ξ ) = 1 − |ξ |2 + A|ξ |2+δ + · · · (67)

which takes into account the fact that g∞ satisfies conditions (3). The leading small
ξ -behavior of the singular component will reflect an algebraic tail of the velocity
distribution. Substitution of expression (67) into (66) shows that the coefficient of
the power |ξ |2+δ is ASp,q (δ). Thus, the term A|ξ |2+δ can appear in the expansion
of ĝ(ξ ) as soon as δ is such that Sp,q (δ) = 0, δ > 0. In other words, tails in the
stationary distributions are present in all cases in which there exists a δ = δ̄ > 0
such that Sp,q (δ̄) = 0. Now the answer is contained into Lemma 3.3.

3.3. The Grazing Collision Asymptotics

The results of the previous section are at the basis of the rigorous derivation of
the Fokker-Planck asymptotics formally derived in Secs. 2.1 and 2.2. Suppose that
the initial density g0(v) = f0(v) satisfies condition (54). Using a Taylor expansion,
we obtain

|pv + qw|2+δ − |v|2+δ = (2 + δ)|v|δv((p − 1)v + qw)

+ 1

2
(1 + δ)|ṽ|δ((p − 1)v + qw)2, (68)

where, for some 0 ≤ θ ≤ 1,

ṽ = θ (pv + qw) + (1 − θ )v.

Using this into equality (55), one has

d

dt

∫
IR

|v|2+δg(v, t) dv + (2 + δ)
p2 + q2 − 1

2

∫
IR

|v|2+δg(v, t) dv = (2 + δ)



Self-Similarity and Power-Like Tails in Nonconservative Kinetic Models 767

×
∫

IR2
(|v|δv((p − 1)v + qw))g(v)g(w) dv dw + 1

2
(2 + δ)(1 + δ)

×
∫

IR2
|ṽ|δ((p − 1)v + qw)2g(v)g(w) dv dw. (69)

Since the momentum of g is equal to zero, we can rewrite (69) as

d

dt

∫
IR

|v|2+δg(v, t) dv + 2 + δ

2
[(p − 1)2 + q2]

∫
IR

|v|2+δg(v, t) dv ≤

+1

2
(2 + δ)(1 + δ)

∫
IR2

|ṽ|δ((p − 1)v + qw)2g(v)g(w) dv dw. (70)

Assuming 0 < δ < 1,

|ṽ| ≤ (1 + p)δ|v|δ + qδ|w|δ.
Hence, if |p − 1|/q = λ, we obtain the bound

d

dt

∫
IR

|v|2+δg(v, t) dv + 2 + δ

2
q2

[
1 + λ2

] ∫
IR

|v|2+δg(v, t) dv ≤

+1

2
(2 + δ)(1 + δ)q2

∫
IR2

((1 + p)δ|v|δ + qδ|w|δ)(λv + w)2g(v)g(w) dv dw,

or, what is the same,

d

dt

∫
IR

|v|2+δg(v, t) dv ≤ q2C(λ, q)
∫

IR
|v|2+δg(v, t) dv . (71)

If we now use (31), it holds

d

dτ

∫
IR

|v|2+δh(v, τ ) dv ≤ C(λ, q)
∫

IR
|v|2+δh(v, τ ) dv , (72)

namely the uniform boundedness of the (2 + δ)-moment of h(v, τ ) with respect
to q, for any fixed time τ .

Consider now the remainder (13), which can be rewritten as

R(p, q) = q2

2

∫
IR2

(
p − 1

q
v + w

)2 (
φ′′(ṽ) − φ′′(v)

)
h(v)h(w) dv dw. (73)

We need the following

Definition 3.6. Let Fs(IR), be the class of all real functions φ on IR such that
φ(m)(v) is Hölder continuous of order δ,

‖φ(m)‖δ = sup
v �=w

|φ(m)(v) − φ(m)(w)|
|v − w|δ < ∞, (74)
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the integer m and the number 0 < δ ≤ 1 are such that m + δ = s, and φ(m) denotes
the m-th derivative of g.

If φ ∈ Fs(IR), with s = 2 + δ,∣∣φ′′(ṽ) − φ′′(v)
∣∣ ≤ ‖φ′′‖δ|ṽ − v|δ ≤ ‖φ′′‖δ|(p − 1)v + qw|δ. (75)

In this case,

R(p, q) ≤ q2+δ

2
‖φ′′‖δ

∫
IR2

(
p − 1

q
v + w

)2+δ

h(v)h(w) dv dw

≤ q2+δ

2
‖φ′′‖δC2(λ, q)

∫
IR2

|v|2+δh(v) dv. (76)

Thanks to the uniform bound on (2 + δ)-moment of h(v, τ ) , it follows that, for
any fixed time τ > 0,

lim
q→0

1

q2
R(p, q) = 0 (77)

as soon as φ ∈ Fs(IR), with s = 2 + δ. This implies that the limit equation is the
Fokker-Planck equation (19). We proved

Theorem 3.7. Let the probability density f0 ∈ Mα , where α = 2 + δ for some
δ > 0, and let the mixing parameters satisfy

(p − 1)2

q2
= λ2,

for some constant λ fixed. Then, as q → 0, for all φ ∈ Fs(IR), with s = 2 + δ

the weak solution to the Boltzmann equation (17) for the scaled density h(v, τ ) =
g(v, t), with τ = q2t converges, up to extraction of a subsequence, to a probability
density h(w, τ ). This density is a weak solution of the Fokker-Planck equation (19).

3.4. A Comparison of Tails

The result of Sec. 3.3 establishes a rigorous connection between the colli-
sional kinetic equation (2) and the Fokker-Planck equation (19). The result of
Lemma 3.3, coupled with the comment of Remark 2.3. then shows that there ex-
ists a link between tails of the stationary solution of Fokker-Plank and Boltzmann
equations. In fact, one can choose λ2 > 0 in Theorem 3.7 if and only if the mixing
parameters p and q satisfy the conditions of the aforementioned Lemma 3.3. Since
the reckoning of the size of the tails is immediate in the Fokker-Planck case, it
would be important to know if one can extract from this knowledge information
about size of the tails of the Boltzmann equation.



Self-Similarity and Power-Like Tails in Nonconservative Kinetic Models 769

Since the size of tails in the Boltzmann equation is given by the positive root
of the equation

Sp,q (δ) = 0,

where Sp,q is the function (52), we will try to extract information by comparing
this root with the value of the parameter λ that characterizes the tails of the Fokker-
Planck equation. If p > 1, using a Taylor expansion of Sp,q (δ), with p = 1 + λq,
we obtain

Sp,q (δ)

q2
= 2 + δ

2

[
(λ2δ − 1) + 2

2 + δ
qδ + (1 + δ)δ

3
λ3 q̄3

q2

]
, (78)

where 0 ≤ q̄ ≤ q. This shows that, in the scaling of Theorem 3.7, the positive root
δ∗(q) of Sp,q (δ) = 0 converges, as q → 0 to the value 1/λ2, which characterizes
the tails of the Fokker-Planck equation. When λ > 0, one can easily argue that
δ∗(q) < 1/λ2. In this case, in fact,

Sp,q (δ)

q2
= 2 + δ

2
[
(
λ2δ − 1

) + A], (79)

where A > 0 if q > 0. Hence

Sp,q (1/λ2)

q2
= 2 + δ

2
A > 0, (80)

that, by virtue of the convexity properties of Sp,q (δ) implies δ∗(q) < 1/λ2.
A weaker information can be extracted when p < 1 while p2 + q2 < 1. In

this case, writing p = 1 − λq, λ > 0, we obtain

Sp,q (δ)

q2
= 2 + δ

2

[(
λ2δ − 1

) + 2

2 + δ
qδ − (1 + δ)δ

3
λ3 q̄3

q2

]
, (81)

where 0 ≤ q̄ ≤ q. Let us set

q ≤ Bλ

1 + λ2
, (82)

where B ≤ 2. In fact, when p < 1 Lemma 3.3 implies that there is formation of
tails only when p and q are such that p2 + q2 < 1, which is equivalent to the
condition

q <
2λ

1 + λ2
. (83)

Hence, when q satisfies (82), from (81) we obtain the inequality

Sp,q (δ)

q2

2 + δ

2

[(
λ2δ − 1

) − B
(1 + δ)δ

3

λ4

1 + λ2

]
. (84)
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Easy computations then show that, if δ = rλ2, with 0 < r < 1, the right-hand side
of (84) is nonnegative as soon as

3r (1 − r )(1 + λ2)B(1 + rλ2).

Hence, the biggest value of B for which the right-hand side of (84) is nonnegative
is attained when r = 1/2. In this case, B = 3/4, and δ∗(q) < 2/λ2. We can collect
the previous analysis into the following

Lemma 3.8. Let the mixing parameters satisfy

(p − 1)2

q2
= λ2,

for some constant λ fixed. Then, if p > 1 the positive root δ∗(q) of the equation
Sp,q (δ) = 0, characterizing the tails of the Boltzmann equation, satisfies the bound
δ∗(q) < 1/λ2. If p < 1, and at the same time q satisfies the bound (82) with
B = 3/4, the positive root δ∗(q) of the equation Sp,q (δ) = 0, satisfies the bound
δ∗(q) < 2/λ2.

We remark here that, in the case p < 1, setting δ = 1 we obtain an exact
formula for Sp,q (1),

Sp,q (1)

q2
= 3

2

[(
λ2 − 1

) + 2

3
q − 2

3
λ3q

]
. (85)

Choosing λ = 1, we get Sp,q (1) = 0. This case, that corresponds to the conserva-
tion of momentum in the Boltzmann equation has tails which are invariant with
respect to q (see Remark 2.4.).

3.5. Kinetic Models of Economy

The analysis of Sect. 3, 3.1, 3.2 and 3.3 can be easily extended to equation
(26) for the wealth distribution. We can in fact resort to the methods introduced
for the kinetic equation on the whole real line simply setting

F(v, t) = f (v, t)I (v > 0), v ∈ IR, (86)

where I (A) is the indicator function of the set A. With this notation, equation (26)
can be rewritten as equation (2),

∂ F(v)

∂t
=

∫
IR

(
1

J
F(v∗)F(w∗) − F(v)F(w)

)
dw. (87)

Likewise, the weak form (27) reads

d

dt

∫
IR

φ(v)F(v, t) dv =
∫

IR2
F(v, t)F(w, t)(φ(v∗) − φ(v)) dv dw. (88)
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We recall that the role of the energy is now supplied by the mean m(t) =∫
vF(v, t) dv. To look for self-similarity we scale our solution according to

G(v, t) = m(t)F (m(t)v, t) , (89)

which implies that
∫

vG(v, t) = 1 for all t ≥ 0. Hence, without loss of generality,
if we fix the initial density to satisfy∫

IR
F0(v) dv = 1 ;

∫
IR

vF0(v) dv = 1 , (90)

the solution G(v, t) satisfies (90). Then, the same computations of Sec. 3 show
the following

Theorem 3.9. Let f1(t) and f2(t) be two solutions of the Boltzmann equa-
tion (26), corresponding to initial values f1,0 and f2,0 satisfying conditions (90).
Then, if for some 1 ≤ s ≤ 2, ds( f1,0, f2,0) is bounded, for all times t ≥ 0,

ds( f1(t), f2(t)) ≤ exp{(ps + qs − 1)t}ds( f1,0, f2,0). (91)

In particular, let f0 be a nonnegative density satisfying conditions (3). Then, there
exists a unique weak solution f (t) of the Boltzmann equation, such that f (0) = f0.
In case ps + qs − 1 < 0 the distance ds is contracting exponentially in time.

Since by (89)

Ĝ(ξ ) = Ĝ

(
ξ

m(t)

)
,

from (49) we obtain the bound

ds(g1(t), g2(t)) = sup
ξ∈IR

|Ĝ1(ξ, t) − Ĝ2(ξ, t)|
|ξ |s =

(
1

m(t)

)s

ds( f1(t), f2(t)). (92)

Using (91), we finally conclude that, if g1(t) and g2(t) are two solutions of the
scaled Boltzmann equation (26), corresponding to initial values f1,0 and f2,0

satisfying conditions (90), Then, if 1 ≤ s ≤ 2, for all times t ≥ 0,

ds(g1(t), g2(t)) ≤ exp{[(ps + qs − 1) − s(p + q − 1)]t
}

ds( f1,0, f2,0). (93)

Let us define, for δ ≥ 0,

Rp,q (δ) = p1+δ + q1+δ − 1 − (1 + δ) (p + q − 1) . (94)

Then, the sign of Rp,q now determines the asymptotic behavior of the distance
ds(g1(t), g2(t)). With few differences, the proof leading to Lemma 3.3 can be
repeated, obtaining
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Lemma 3.10. Let Rp,q (δ), δ ≥ 0 be the function defined by (94). Given a con-
stant λ > 0, if p + q < 1, let us define p = 1 − λ

√
q . Then, provided q < 1/λ2

there exists an interval I− = (0, δ̄−(q)) such that Rp,q (δ) < 0 for δ ∈ I−. If
p + q > 1, and p = 1 + λ

√
q there exists a interval I+ = (0, δ̄+(q)) such that

Rp,q (δ) < 0 for δ ∈ I+. In the remaining cases, namely when p + q = 1 or
p + q > 1 but p < 1, Rp,q (δ) < 0 for all δ > 0.

The main consequence of Lemma 3.10 is contained into the following.

Theorem 3.11. Let g1(t) and g2(t) be two solutions of the Boltzmann equa-
tion (26), corresponding to initial values f1,0 and f2,0 satisfying conditions (90).
Then, there exists a constant δ̄ > 0 such that, if 1 < s < 1 + δ̄, for all times t ≥ 0,

ds(g1(t), g2(t)) ≤ exp {−Cst} ds( f1,0, f2,0). (95)

The constant Cs = −Rp,q (s − 1) is strictly positive, and the distance ds is con-
tracting exponentially in time.

Existence and uniqueness of the stationary solution to Eq. (29) follows along
the same lines of Sec. 3.2. The main result is now contained into the following.

Theorem 3.12. Let δ > 0 be such that Rp,q (δ) < 0, and let g∞(v) be the unique
stationary solution to equation (29). Let g(v, t) be the weak solution of the Boltz-
mann equation (29), corresponding to the initial density f0 satisfying∫

IR+
|v|1+δ f0(v) dv < ∞.

Then, g(v, t) satisfies ∫
IR+

|v|1+δ g(v, t) dv ≤ cδ < ∞,

for some constant cδ depending only on p and q. Moreover, g(v, t) converges
exponentially fast in Fourier metric towards g∞(v), and the following bound holds

d1+δ(g(t), g∞) ≤ d1+δ( f0, g∞) exp{−|Rp,q (δ)|t} (96)

where Rp,q (δ) is given by (94).

Depending on the values of the mixing parameters p and q, the stationary
solution g∞ can have overpopulated tails. The Fourier transform of g∞ satisfies
the equation

−(p + q − 1)ξ
∂Ĝ

∂ξ
+ Ĝ(ξ ) = Ĝ(pξ )Ĝ(qξ ). (97)
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We set

Ĝ(ξ ) = 1 − iξ + A|ξ |1+δ + . . . (98)

which takes into account the fact that g∞ satisfies conditions (90). The leading
small ξ -behavior of the singular component will reflect an algebraic tail of the
velocity distribution. Substitution of expression (98) into (97) shows that the
coefficient of the power |ξ |1+δ is ARp,q (δ). Thus, the term A|ξ |1+δ can appear in
the expansion of Ĝ(ξ ) as soon as δ is such that Rp,q (δ) = 0, δ > 0. As before,
tails in the stationary distributions are present in all cases in which there exists a
δ = δ̄ > 0 such that Rp,q (δ̄) = 0. Now the answer is contained into Lemma 3.10.

Last, one can justify rigorously the passage to the Fokker-Planck equation
(35).

Theorem 3.13. Let the probability density f0 ∈ Mα , where α = 1 + δ for some
δ > 0, and let the mixing parameters satisfy

(p − 1)2

q
= λ,

for some λ > 0 fixed. Then, as q → 0, for all φ ∈ Fs(IR), with s = 1 + δ the weak
solution to the Boltzmann equation (32) for the scaled density h(v, τ ) = g(v, t),
with τ = qt converges, up to extraction of a subsequence, to a probability density
h(w, τ ). This density is a weak solution of the Fokker-Planck equation (35).

We finally remark that the discussion of Sec. 3.4, with minor modifications,
can be adapted to establish connections between the size of the tails of the kinetic
and Fokker-Planck models.

4. NUMERICAL EXAMPLES

In this paragraph, we shall compare the self-similar stationary results obtained
by using Monte Carlo simulation of the kinetic model with the stationary state of
the Fokker-Planck model. The method we adopted is based on Bird’s time counter
approach at each time step followed by a renormalization procedure according to
the self-similar scaling used. We refer to (27) for more details on the use of Monte
Carlo method for Boltzmann equations.

We used N = 5000 particles and perform several iterations until a stationary
state is reached. The distribution is then averaged over the next 4000 iterations in
order to reduce statistical fluctuations. Clearly, due to the slow convergence of the
Monte Carlo method near the tails, some small fluctuations are still present for
large velocities.
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4.1. Gaussian Behavior

First we consider the case λ = 0 for which the steady state of the Fokker-
Planck asymptotic is the Gaussian (24). We fix p = 1 so that for q < 1/

√
2 we

expect Gaussian behavior also in the kinetic model. We report the results obtained
for q = 0.4 and q = 0.8 in Figure 2.

4.2. Formation of Power Laws

Next we simulate the formation of power laws for positive λ. We take p = 1.2
and q = .4 which correspond to λ = 0.5. Keeping the same value of λ we then
take q = 0.1 and p = 1.05. In Figure. 3 we plot the results showing convergence
towards the Fokker-Planck behavior.

4.3. A Simple Growing Economy

We take the case of a growing economy for p = 1 − q + 2
√

q thus corre-
sponding to the limit Fokker-Planck steady state (36) with λ = 2 and µ = 2. As
prescribed from our theoretical analysis we observe that the equilibrium distribu-
tion converges toward the Fokker-Planck limit as q goes to 0, with λ fixed. The
results are reported in Figures 4.

5. CONCLUSIONS

In this paper we studied the large-time behavior of a simple one-dimensional
kinetic model of Maxwell type, in two situations, depending wether the velocity
variable can take values on IR or in IR+, the former case describing nonconserva-
tive models of kinetic theory of rarefied gases, the latter elementary kinetic models
of open economies. In both situations it has been shown that the lack of conserva-
tion laws leads to situations in which the self-similar solution has overpopulated
tails. This is particularly important in the case of economy, where elementary ex-
planations of the formation of Pareto tails can help to handle more complex models
of society wealth distribution, where various other factors occur. It would be cer-
tainly interesting to extend a similar analysis to more realistic situations. Recently,
a kinetic model including market returns has been introduced.(13) While for this
model the asymptotic convergence to the Fokker-Planck limit can be obtained, the
property of creation of overpopulated tails has been shown only by numerical sim-
ulation. In realistic models, in fact, there is a strong correlation among densities,
due to the constraint of having non-negative wealths after trades, and this appears
difficult to treat from a mathematical point of view. A further point deserves to be
mentioned. Recent studies have shown that, while overpopulated tails seem to be
generic feature of the non-conservative collision mechanism, in the kinetic theory
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of the Boltzmann equation power-like tails only occur in the borderline case of
Maxwell molecules interactions,(6,7,14,15) whereas in general collision dissipative
processes have stretched exponential tail behaviors.(8) It could be conjectured that
the corresponding phenomenon in general kinetic models of economy with wealth-
depending collision frequency manifest a behavior in the form of a lognormal type
distribution.
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